FANDOM


There are many different types of Fission reactor and Fusion reactor fuels.

Fission Reactor Fuels Edit

When a Fission fuel's fuel cycle has run its course, they will turn into a Depleted Fuel Cell. By putting depleted cells into a Reprocessing Plant, you will be able to craft other fission fuels from the Isotopes of depleted cells.

TIP: A typical Low-Enriched fuel consists of 4 oxide and 4 normal parts of the same isotope with the addition of a second isotope, which is that determines the isotope of the fuel.

Here is an example:

Low-Enriched Uranium-235 (LEU-235) consists of the following: Uranium-238 (x4), Uranium-238 Oxide (x4), Uranium-235 (x1).

These can be arranged in any order you want as long as you have 4 oxides, 4 non-oxides and one fuel isotope.

Basic Fuels: Edit

Fuel Base RF/t Base Heat Lifetime (Sec) Base Total Energy
Low-Enriched Uranium

(LEU-235/LEU-233)

200 RF/t 80 H/t 2000 s 8 MRF
Highly-Enriched Uranium

(HEU-235/HEU-233)

800 RF/t 640 H/t 2000 s 32 MRF
Low-Enriched Plutonium

(LEP-239/LEP-241)

400 RF/t 200 H/t 1000 s 8 MRF
Highly-Enriched Plutonium

(HEP-239/HEP-241)

1600 RF/t 1600 H/t 1000 s 32 MRF
Thorium-Bred Uranium

(TBU)

100 RF/t 20 H/t 4000 s 8 MRF
Low-Enriched Neptunium

(LEN-236)

150 RF/t 40 H/t 4000 s 12 MRF
Highly-Enriched

Neptunium (HEN-236)

600 RF/t 320 H/t 4000 s 48 MRF
Low-Enriched Americium

(LEA-242)

300 RF/t 120 H/t 2000 s 12 MRF
Highly-Enriched Americium (HEA-242) 1200 RF/t 960 H/t 2000 s 48 MRF
Low-Enriched Curium

(LEC-243/LEC-245/LEC-247)

500 RF/t 300 H/t 1300 s 13 MRF
Highly-Enriched Curium

(HEC-243/HEC-245/HEC-247)

2000 RF/t 2400 H/t 1300 s 52 MRF

Oxide Fuels: Edit

Fuel Base RF/t Base Heat Lifetime (Sec) Base Total Energy
LEU-235/LEU-233 Oxide 300 RF/t 100 H/t 2000 s 12 MRF
HEU-235/HEU-233 Oxide 1200 RF/t 800 H/t 2000 s 48 MRF
LEP-239/LEP-241 Oxide 600 RF/t 250 H/t 1000 s 12 MRF
HEP-239/HEP-241 Oxide 2400 RF/t 2000 H/t 1000 s 48 MRF
Mixed Oxide Fuel

(MOX-239/MOX-241)

500 RF/t 240 H/t 1300 s 13 MRF
TBU Oxide 150 RF/t 25 H/t 4000 s 12 MRF
LEN-236 Oxide 225 RF/t 50 H/t 4000 s 18 MRF
HEN-236 Oxide 900 RF/t 400 H/t 4000 s 48 MRF
LEA-242 Oxide 450 RF/t 150 H/t 2000 s 18 MRF
HEA-242 Oxide 1800 RF/t 1200 H/t 2000 s 48 MRF
LEC-243/LEC-245/LEC-247 Oxide 750 RF/t 375 H/t 1300 s 19.5 MRF
HEC-243/HEC-245/HEC-247 Oxide 3000 RF/t 3000 H/t 1300 s 78 MRF

Fusion Reactor Fuels Edit

Fusion fuels don't work nearly the same as Fission fuels. They work rather on the combination between two different fuels that fuse together creating many different unique combinations.

As of Version 1.5:

The table below lists the variables used in the heat, power, and fuel consumption equations.

The Heat Variables are used in the Efficiency Equation:

efficiency = 100*e^(-((heatVariable - ln(t))^2)/2)/(t*e^(0.5 - heatVariable))

where 't' is the current Reactor Temperature and 'h' is the fuel combo's Heat Variable.

The Power Variables are used to determine the amount of RF generated per tick:

powerGen = efficiency*fusionRF*size*powerVariable/200

Where size is the Size of the Fusion Reactor and fusionRF is the Fusion Reactor's Power Generation config value

The Fuel Variables are used to determine the amount of Fuel used up per tick:

fuelUsage = (sqrt(efficiency)/10)*size*fuelVariable
Fuel Combination Heat Power Fuel Max RF/t Efficiency >= 95% (MK) Products and Ratio (Fuel Cells:Product)*
Hydrogen-Hydrogen 8.87 80 100 4000 1900-2500 Deuterium (~2:1)
Hydrogen-Deuterium 8.43 60 60 3000 1300-2300 Helium-3 (~2:1)
Hydrogen-Tritium 9.65 20 40 1000 4100-7900 Helium-3 (~2:1) + Neutron Flux (~16:1)
Hydrogen-Helium-3 9.68 20 40 1000 4300-8200 Helium-4 (~2:1)
Hydrogen-Boron-11 9.84 80 10 4000 5000-9600 Helium-4 (~2:3)
Hydrogen-Lithium-6 9.62 30 10 1500 4000-7700 Tritium (~2:1) +

Helium-4 (~2:1)

Hydrogen-Lithium-7 9.64 120 20 6000 4100-7900 Helium-4 (~2:1)
Deuterium-Deuterium 9.67 140 40 7000 4200-8100 Hydrogen (~4:1) +

Tritium (~4:1) +

Helium-3 (~4:1) +

Neutron Flux (~16:1)

Deuterium-Tritium 7.70 240 60 12000 600-1100 Helium-4 (~2:1) + Neutron Flux (~16:1)
Deuterium-Helium-3 8.97 160 25 8000 2100-4000 Helium-4 (~2:1) +

Hydrogen (~2:1)

Deuterium-Boron-11 9.89 20 10 1000 5200-10100 Helium-4 (~2:3) +

Neutron Flux (~16:1)

Deuterium-Lithium-6 9.78 150 25 7500 4700-9100 Helium-4 (~1:1)
Deuterium-Lithium-7 10.10 10 10 500 6400-12500 Helium-4 (~1:1) +

Neutron Flux (~16:1)

Tritium-

Tritium

9.46 60 20 3000 3400-6600 Helium-4 (~2:1) +

Neutron Flux (~8:1)

Tritium-Helium-3 9.73 40 10 2000 4500-8600 Hydrogen (~2:1) +

Helium-4 (~2:1) +

Neutron Flux (~16:1)

Tritium-

Boron-11

10.16 10 10 500 6800-13300 Helium-4 (~2:3) +

Neutron Flux (~8:1)

Tritium-Lithium-6 10.28 5 2 250 7700-15000 Helium-4 (~1:1) +

Neutron Flux (~16:1)

Tritium-Lithium-7 10.31 10 4 500 7900-15400 Helium-4 (~1:1) +

Neutron Flux (~8:1)

Helium-3-Helium-3 10.02 120 20 6000 6000-11500 Hydrogen (~1:1) +

Helium-4 (~2:1)

Helium-3-Boron-11 10.30 5 5 250 7900-15300 Deuterium (~2:1) +

Helium-4 (~2:3)

Helium-3-Lithium-6 10.56 140 28 7000 10200-19800 Hydrogen (~2:1) +

Helium-4 (~1:1)

Helium-3-Lithium-7 10.62 30 10 1500 10800-21000 Deuterium (~2:1) +

Helium-4 (~1:1)

Boron-11-Boron-11 10.58 10 5 500 10400-20200 Helium-4 (~2:5) +

Neutron Flux (~8:1)

Boron-11-Lithium-6 10.61 5 5 250 10700-20800 Helium-4 (~1:2) +

Neutron Flux (~16:1)

Boron-11-Lithium-7 10.69 5 5 250 11600-22600 Helium-4 (~1:2) +

Neutron Flux (~8:1)

Lithium-6-Lithium-6 10.68 5 5 250 11500-22300 Helium-4 (~2:3)
Lithium-6-Lithium-7 10.66 5 5 250 11200-21900 Helium-4 (~2:3) +

Neutron Flux (~16:1)

Lithium-7-Lithium-7 10.73 5 5 250 12100-23500 Helium-4 (~2:3) +

Neutron Flux (~8:1)

*Note: The ratios are approximations, in game it takes slightly more fuel to get a product.